US009304815B1

a2 United States Patent 10) Patent No.: US 9,304,815 B1
Vasanth et al. (45) Date of Patent: Apr. 5, 2016
(54) DYNAMIC REPLICA FAILURE DETECTION (56) References Cited
AND HEALING U.S. PATENT DOCUMENTS
(71) Applicant: Amazon Technologies, Inc., Reno, NV 5,089,970 A * 2/1992 Lee ..o G06%(1)?1/ 88
Us) 5,491,823 A * 2/1996 Ruttenberg GOGF 8/452
g
717/161
*
(72) Inventors: Jai Vasanth, Seattle, WA (US); Barry 3:941,999 A 1999 Matena ..o GOGK ;(1)/92/28;
Bailey Hunter, Jr., Sammamish, WA 6,671,821 Bl * 12/2003 Castro etal.ccccorren..n 714/4.3
(US); Kiran-Kumar (Continued)
Muniswamy-Reddy, Seattle, WA (US);
David Alan Lutz, Renton, WA (US); FOREIGN PATENT DOCUMENTS
Jian Wang, Bellevue, WA (US);
Maximiliano MacCanti, Bellevue, WA GB 2444342 A 52007 HO4L 29/08
Us) OTHER PUBLICATIONS
Baker et al., “Megastore: Providing Scalable, Highly Available Stor-
Lo . S g ghly
(73) Assignee: Amazon Technologies, Inc., Reno, NV age for Interactive Services”, the 5th Biennial Conference on Inno-
Us) vative Data Systems Research (CIDR’ 11), Jan. 9-12, 2011,
Asilomar, California, USA, pp. 223-234.*
(*) Notice: Subject to any disclaimer, the term of this (Continued)
patent is extended or adjusted under 35
W : rimary Examiner — Phuong Thao Cao
(74) Attorney, Agent, or Firm — Robert C. Kowert;
(21) Appl. No.: 13/917,317 Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.
57 ABSTRACT
(22) Filed: Jun. 13,2013 7 . . o . .
Detecting replica faults within a replica group and dynami-
cally scheduling replica healing operations are described.
(51) Imt.CL Status metadata for one or more replica groups may be
GO6F 9/48 (2006.01) accessed. Based, at least in part, the status data a number of
GOG6F 11/07 (2006.01) available replicas for at least one replica group may be deter-
GO6F 3/06 (2006.01) mined to incompliant with a healthy state definition for the
GOGEF 17/30 (2006.01) replica group. One or more healing operations to restore the
(52) US.CL number of available replicas for the at least one replica group
CPC .. GOGF 9/4881 (2013.01); GOGF 3/0617 to the respective healthy state definition may be dynamically
(2013.01); GOGF 11/07 (2013.01); GOGF scheduled. In some embodiments, one or more resource con-
’ 17/30575 2613.01 straints for performing healing operations and one or more
. . . () resource requirements for each of the one or more healing
(58) Field of Classification Search operations may be used to order the one or more healing

CPC .. GOGF 3/0617; GOGF 11/07; GOG6F 17/30575

USPC ittt 707/679
See application file for complete search history.

operations.

18 Claims, 7 Drawing Sheets

Access status metadata for one or more replica groups that
mainiain one or mors repioas of data and incude 3 heallhy state
definition for. gasz repiica group

|

Determing based,atfast n part, n the status motadata tata
number of available replicas for at least oie repiica group of the
ane or more repiica groups is not mmplrsm‘ with the healthy state
el for e rospecive rapica group

|

Dynaimially soheduing ono or mos ropics healng oporations (o
ihe number of availablo raplcas for the at foast ono
ropica roup t the roapacive Naahy stets oriilon for 1ot
Ieast one repiica group based, at least in part, on one or more
rs0UrO8 Constraints for p;ggrmmg ‘healing operations

|

Automatically performing the scheduied ane or more replica
hesiing opersfions to restore the number of svailable rapiicss for
the at Joast one rapiica group to the respective ealthy state
aeiniion for (52 at £aatcns rapca goup

US 9,304,815 B1

Page 2
(56) References Cited 2010/0299309 Al* 11/2010 Makiccoueveneee. GOGF 11/1479
707/640
U.S. PATENT DOCUMENTS 2011/0055843 Al* 3/2011 Keeton GO6F 9/4881
718/104
7,702,667 B2* 4/2010 Yahalometal. 707/611 2011/0099420 Al* 42011 MacDonald
7,831,550 B1* 11/2010 Pandeetal. 707/610 etal. ..o GOGF 11/2025
8,386,540 B1* 2/2013 MecAlister GO6F 17/30566 . 714/6.32
707/771 2011/0153930 Al* 6/2011 Serizawa GO6F 3/0613
8,392,312 B2 3/2013 Batsakis et al.) 711/114
8,392,482 Bl* 3/2013 McAlister GO6F 17/30584 2012/0166390 Al* 6/2012 Merriman et al. 707/613
707/771 2012/0197868 Al* 82012 Fauser GO6F 17/30286
8,423,731 B1* 4/2013 Nadathur GO6F 11/1461 707/714
707/640 2012/0254119 Al* 10/2012 Kumarasamy GOGF 11/1469
8,468,132 B1* 6/2013 O’Neilletal. 707/622) 707/646
8,554,762 Bl * 10/2013 O’Neill et al. .. 707/715 2012/0284229 Al* 11/2012 Kimetal.ccccocvvrenenne 707/634
9,015,724 B2* 4/2015 Druyan GO6F 9/505 2014/0095813 Al* 4/2014 Shukla GO6F 3/0611
718/104 711/154
2002/0055972 Al* 5/2002 Weinman, Jr. GOG6F 11/2058 2014/0101298 Al* 4/2014 Shuklaetal. ... 709/223
709/203 2014/0279825 Al* 9/2014 Shuklaetal. 707/601
2003/0208511 Al 11/2003 Farl et al. 2014/0365658 Al* 12/2014 Langetal. ... 709/226
2004/0059805 Al* 3/2004 Dinkeretal.c.c... 709/223
2004/0078637 Al* 4/2004 Fellin GOGF 11/1443 OTHER PUBLICATIONS
2004/0139083 Al* 7/2004 Hahn et al 77017%60'3 Chun et al., “Efficient Replica Maintenance for Distributed Storage
2005/0039069 Al* 2/2005 Prahlad etal. .. o 71472 Systems”, in NSDI, 2006, 14 pages.*
2006/0020754 Al* 1/2006 Suzukietal. 711/114 McCue et al., “Computing Replica Placement in Distributed Sys-
2006/0090095 Al* 4/2006 Massac....... GO6F 11/1479 tems”, In Proceedings of the IEEE Second Workshop on Replicated
714/4.11 Data, Monterey, Nov. 1992, 4 pages.*
2006/0098017 Al* 5/2006 Tarditi, Jr. GOGF 8/45 Noor et al., “Failure Recovery Mechanism in Neighbor Replica Dis-
. N 345/505 tribution Architecture”, ICICA 2010, LNCS 6377, pp. 41-48, 2010.*
2006/0098019 Al 5/2006 Tarditi, Jr. ..oooovevrrnrnn. Goffsfs/gg Costache et al., “Semias: Self-Healing Active Replication on Top of
a Structured Peer-to-Peer Overlay”, In Proceedings of the 2010 29th
2006/0101200 Al : 312006 DOI oo 711113 IEEE International Symposium on Reliable Distributed Systems, pp.
2006/0253504 Al* 11/2006 Leeetal.cccocovvnnrne 707/203 235244, 2010
2007/0156842 Al* 7/2007 Vermeulen GOGF 17/30212 i . . L. . N
709/217 Frincu et al., “Self-Healing Distributed Scheduling Platform”, In
2007/0174697 Al* 7/2007 Saridakis et al. ..ovrvvvvnn. 714/19 Proceedings of the 2011 11th IEEE/ACM International Symposium
2007/0282915 Al* 12/2007 Vosshalletal. 707/200 on Cluster, Cloud and Grid Computing, pp. 225-234, 2011.*
2008/0052327 Al* 2/2008 Buahocooovvvnin. 707/204 Silva et al., “Self-Healing of Operational Workflow Incidents on
2008/0126404 Al* 5/2008 Slik etal. . 707/103 R Distributed Computing Infrastructures”, In Proceedings of the 2012
2008/0288646 Al* 11/2008 Hasha et al. ... 709/228 12th IEEE/ACM International Symposium on Cluster, Cloud and
2009/0037451 AL* 2/2009 Borsill 707101 Grid Computing, pp. 318-325, 2012.*
2009/0113434 Al 4/2009 Podilacoooovvvvnneen. GO6F7% ‘}?g é Tian et al., “Probabilistic Failure Detection for Efficient Distributed
2009/0210455 Al* 8/2009 Sarkarctal.c.c.c.c.... 707/201 St"lrfgl? ﬁa‘g?nagce &Ig Proceemngijﬂ“}%éoggéEEE Symposium
2009/0216796 Al* /2009 Sliketal. 707/103 R~ On Reliable Distributed Systems, pp. 147-156, 2008.
2009/0254774 Al* 10/2009 Chamdani GOGF 9/48g1 ~ Debanjan Ghosh, Raj Sharman, H. Raghav Rao, Shambhu
7142 Upadhyaya, Self-healing systems—survey and synthesis, Decision
2010/0235840 Al* 9/2010 Angaluri GOGF 1/329 Support Systems, vol. 42 Issue 4, Jan. 2007, pp. 2164-2185.
718/102
2010/0262717 Al* 10/2010 Critchley etal. 709/251 * cited by examiner

U.S. Patent

US 9,304,815 B1

Apr. 5,2016 Sheet 1 of 7
Storage Node Storage Node Storage Node Storage Node
102a 102b 102¢ 102d
Replica 104a Replica 104b Replica 104c

1

Storage Node Admin Instance 150
102¢
Metadata Sweeper 150a
106
Scheduler 150b
_limeo0 _ _ _ _ _ _ _ o ________.
S‘t't\rage Notle Storage Node Storage Node Storage Node
*4025° 102b 102¢ 102d
Repita404a Replica 104b Replica 104c

Storage Node

1

/

Admin Instance 150

102¢ -
Metadata Sweeper 150a
106
Scheduler 150b
dme e _____.
§tt2rage Node Storage Node Storage Node Storage Node
‘.102@' 102b 102¢ ,.f""1 ~‘ 102d
Replffa404d Replica 104a Replica 104b Replica 104d
0" “\ 1
Storage Node Admin Instance 150
102¢
Metadata Sweeper 150a
106
Scheduler 150b
Time 2

U.S. Patent Apr. 5, 2016 Sheet 2 of 7 US 9,304,815 B1

client client
110a et 110n

Web services platform 130

front end module admin instance(s)
140 150

| |
| |

storage node storage node
instance instance
160a T 160n

FIG. 1B

U.S. Patent Apr. 5, 2016 Sheet 3 of 7 US 9,304,815 B1

front end module auto admin instance
150
request parsing & throttling visibility and control
210 245
authentication/metering heat balancing anomaly control
215 250 255
request dispatching resource allocation
225 260
partition map cache message bus | dynamic configure
230 235 240
message bus | dynamic configure
235 240 admin console
265
sweeper
FIG. 2A 1502
scheduler
150b
FIG. 2B

storage node instance
160

message bus| dynamic configure
235 240

partition manager
270

storage engine
285

replication & failover
275

storage API
280

FIG. 2C

U.S. Patent Apr. 5, 2016 Sheet 4 of 7 US 9,304,815 B1

Access status metadata for one or more replica groups that
maintain one or more replicas of data and include a healthy state
definition for the replica group
302

Determine based, at least in part, on the status metadata that a
number of available replicas for at least one replica group of the
one or more replica groups is not compliant with the healthy state
definition for the respective replica group
304

Dynamically scheduling one or more replica healing operations to
restore the number of available replicas for the at least one
replica group to the respective healthy state definition for the at
least one replica group based, at least in part, on one or more
resource constraints for performing healing operations
306

Automatically performing the scheduled one or more replica
healing operations to restore the number of available replicas for
the at least one replica group to the respective healthy state
definition for the at least one replica group
308

FIG. 3

U.S. Patent Apr. 5, 2016 Sheet 5 of 7 US 9,304,815 B1

Access metadata for a replica group 402

Y

Enough
replicas in the replica group?
404

NO

YES

Identify the replica group for one
or more healing operations
406

Metadata for
another replica group to
analyze?
408

Wait until next scheduled metadata check 41

FIG. 4

U.S. Patent Apr. 5, 2016 Sheet 6 of 7 US 9,304,815 B1

Identify one or more resource constraints for performing healing
operations
802

\

Determine one or more resource requirements for each of the one
or more replica healing operations
504

\

Order the one or more replica healing operations to be performed
without exceeding the one or more resource constraints based, at
least in part, on the one or more resource requirements for each of
the one or more replica healing operations
506

FIG. 5

U.S. Patent Apr. 5, 2016 Sheet 7 of 7 US 9,304,815 B1

Computer System 9900
Processor Processor Processor
9910a 9910b Tt 9910n
A A
A A A
{/O Interface
9930
3
¥
Memory Network Wired and/or
9920 Interface |e—1t» Wireless
9940 Network
Program Data Storage Connection
Instructions 9925 9935
Y
Input/Qutput
Devices
9950
Y y Y

Cursor

Control Keyboard Display(s)

Device 9970 9980

9960

FIG. 6

US 9,304,815 B1

1
DYNAMIC REPLICA FAILURE DETECTION
AND HEALING

BACKGROUND

Several leading technology organizations are investing in
building technologies that sell “software-as-a-service”. Such
services provide access to shared storage, for example, data-
base systems, and/or computing resources to clients, or sub-
scribers. Within multi-tier e-commerce systems, different
resources may be allocated to subscribers and/or their appli-
cations from whole machines, to CPU, to memory, to network
bandwidth, and to 1/O capacity.

Database systems managing large amounts of data on
behalf of users may distribute and/or replicate that data across
two or more machines, often in different locations, for any of
a number of reasons, including security issues, disaster pre-
vention and recovery issues, data locality and availability
issues, etc. These machines may be configured in any number
of ways, including as a shared resource pool. Interaction
between client applications and database servers typically
includes read operations, write operations, and update opera-
tions.

Further, insuring the durability and reliability of data,
which may include monitoring and restoring the stored data,
is difficult to achieve without human intervention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A and 1B illustrate a data storage service comput-
ing environment, according to some embodiments.

FIGS. 2A-2C illustrate additional details of some compo-
nent elements of a data storage service, according to some
embodiments.

FIG. 3 is a high-level flowchart illustrating a method to
dynamically detect and heal replica failures, according to
some embodiments.

FIG. 4 is a high-level flowchart illustrating various meth-
ods and techniques for accessing status metadata, according
to some embodiments.

FIG. 5 is a high-level flowchart illustrating various meth-
ods to dynamically schedule replica healing operations,
according to some embodiments.

FIG. 6 depicts selected elements of an example computer
system capable of implementing the various embodiments of
a data storage service, according to some embodiments.

DETAILED DESCRIPTION OF EMBODIMENTS

Various embodiments of systems and methods are dis-
closed for implementing a data storage service for providing
a high level of durability and availability through replication
and through the automatic scheduling of healing operations in
the event that the data storage service determines that a par-
ticular replica of data may be unavailable or damaged. In
some embodiments, the data storage service provides data
storage services to clients, for example, users, subscribers, or
client applications that access the data storage service on
behalf of users or subscribers. In providing durability and
availability of data, the data storage service may store mul-
tiple replicas of stored data. For example, in storing tables of
data, where tables may be divided into partitions, each table
partition may be stored among multiple storage nodes
included within the data storage service. In some embodi-
ments, the data storage service may store two or more replicas
as a replica group for each partition and maintain a table of
metadata describing state information for each replica. In this

10

15

20

25

30

35

40

45

50

55

60

65

2

example, the data storage service may include a process that
may analyze the metadata and determine whether or not a
particular replica, for some reason, is unavailable, unreliable,
or otherwise not fit for storing a replica. In this example, upon
determining that a replica needs to be replaced or restored, the
data storage service may automatically, and without user
intervention, dynamically schedule operations to heal or
restore the partition to bring the number of reliable partitions
back up to a satisfactory healthy state for the replica group,
such as up to a specific number of replicas and/or location of
replica for maintaining data durability and availability.

As anexample illustrated in FIG. 1A, a data storage service
may maintain data for one or more storage clients. For
instance, in at least some embodiments maintained data may
be a partition of database table (or some other form of data).
A number of replicas of the maintained data may be stored in
different locations, such as on different storage nodes 102a-
102¢. These storage nodes themselves may, in some embodi-
ments, be located at physically different locations (e.g., dif-
ferent data centers), or within different systems or collections
of computing devices (e.g., different server fleets, availability
zones, etc. . . .). These replicas of the data may be collectively
referred to as a replica group. In various embodiments,
healthy state definition for each replica group may be
enforced or maintained. For example, a healthy state defini-
tion may include a specified number of replicas for the replica
group. These replicas may be defined to have certain numbers
ofreplicas stored in different locations (as mentioned above).
In various embodiments, a replica group that is not compliant
with a healthy state definition for the replica group may be
detected by determining or identifying that the total specified
number of replicas is less than defined in the healthy state
definition or that a number of replicas defined to be located in
a particular location (e.g., data center). For instance, in this
example, three replicas for the data are stored among storage
nodes 102a-102¢. Storage node 1024 may be in location 1,
and storage node 1026 and 102¢ may be in location 2.
Although not illustrated, the storage nodes themselves may
be variously organized or arranged. A master storage node,
for instance, may in some embodiments process various
access requests for the data maintained by the storage nodes
of' the replica group.

A data storage service may also include an administrative
module instance, admin instance 150, which may all commu-
nicate through network 120, and where admin instance 150
may include a variety of visibility or control functions or
processes, such as sweeper process 150a and scheduler 1505,
among others. Further description of the various functions,
modules, and implementations of admin instance 150 are
described in further detail below with regard to FIGS. 2A-2C.

Further in this example, as depicted at time 0, storage nodes
102a-102¢ may each store replicas of a given partition of a
table, depicted as replicas 104a-104c¢, where storage node
102¢ may store metadata 106. Metadata 106 may include
information regarding the status of each storage node, and
sweeper 150a may periodically or aperiodically analyze the
contents of metadata 106 to determine whether or not one or
more replicas for a partition may need to be restored.

At this point in this example, as depicted at time 1, a storage
node, storage node 102a may become unresponsive for any of
a variety of reasons. For instance, storage node 102 may
suffer a system failure or lose the ability to communicate
across network 120. As a result of storage node 102a becom-
ing unresponsive, metadata 106 may be updated, and sweeper
150a may analyze the updated metadata to determine that the
replica group including the partition is not compliant with the
healthy state definition for the replica group. For example, as

US 9,304,815 B1

3

not in the example above storage node 102a may be the only
replica located at location 1. A healthy state definition may
require or define that healthy replica group has at least one
replica stored in a different location from other replicas. If
storage node 1025 and storage node 102¢ are located at loca-
tion 2, then the replica group is not compliant with the healthy
state definition for the replica group, and another replica
should be restored on another storage node in a different
location than location 2. Similarly, it may be determined that
areplica group is not compliant with a healthy state definition
for the replica group as the definition requires 3 replicas for a
replica group, and thus another replica needs to be generated.
An excommunication process, or other technique may be
performed to disable the storage node 102a, and as part of this
process, the status metadata for the process may be updated.

As depicted at time 2 in this example, the data storage
service, in response to the determination that a replica of the
partition should be restored, may schedule, according to
scheduler 1505, one or more healing operations to generate a
new replica of the partition. Upon completion of the sched-
uled healing operation, a replica of the partition may be stored
on storage node 1024. Storage node 102 may be located such
that the replica group is compliant with the healthy state
definition for the replica group.

A replica healing operation may generally be any one or
more operations that generate another replica of data main-
tained by a replica group. For instance, various ways of send-
ing, copying, manipulating, transforming, or otherwise modi-
fying the data maintained be incorporated as part of
performing a replica healing operation. In various embodi-
ments, a replica healing operation generates another replica
on a different storage node, as illustrated in FIG. 1A, system,
or device. This replica may not be, in some embodiments, an
exact copy of the maintained data. For instance, various rep-
resent some form or version of the data maintained. For
example, each replica may be shard or some other partition
for maintaining durability that may not exactly share the same
data, or each replica of the replica group may be useful to
generate the maintained data. In at least some embodiments,
a source node for the healing operation, storage node 102c¢,
may send a copy, such as through network 120, to storage
node 1024 to store.

In different embodiments of the data storage service, how
a replica is determined to unavailable and in need of replica-
tion may be accomplished in a variety of ways, such as
described in more detail below with regard to FIGS. 3-5.
Similarly, the process for scheduling creation of a replica
once a replica is determined to be in need of replication may
be accomplished according to various different criteria.

In some embodiments, the data storage service may sup-
port the seamless scaling of tables that are maintained on
behalf of clients in a non-relational data store, for example, a
non-relational database. In some embodiments, the data stor-
age service itself may not impose a maximum table size or
maximum throughput limits, and may not require client-side
partitioning, even for tables having a massive scale. The data
storage service may support automatic live repartitioning of
data in response to the detection of various anomalies, which
may include failure or fault conditions, hot spots, or increases
in table size and/or service request throughput. In other cases,
the data storage service may support explicit live repartition-
ing of data to support planned or anticipated table size and/or
throughput increases, for example, pro-active and/or sub-
scriber initiated live partitioning. In other words, the data
storage service may in some embodiments initiate the re-
sizing, scaling, and/or repartitioning of a table in response to

25

35

40

45

4

receiving one or more requests to store, retrieve, modify, or
delete items in the scalable table.

Further, the data storage service described herein may in
various embodiments support a flexible schema, a plurality of
available consistency models, a variety of service level and/or
business model options, multiple indexing options, and/or
multiple query types. In some embodiments, clients (e.g.,
users, subscribers or client applications) may interact with the
service through a Web service interface using a relatively
small and relatively simple set of application programming
interfaces (APIs), such that clients of the service are largely
relieved from the burden of database administration. The
service may exhibit low latency in servicing requests. Unlike
in some prior data storage services, the service may provide
predictable performance at a low cost, while supporting
multi-tenancy and automatic heat management.

Invarious embodiments, the data storage service described
herein may provide an API that includes support for some or
all of the following operations on the data in a table main-
tained by the service on behalf of a client: put (or store) an
item, get (or retrieve) one or more items having a specified
primary key, delete an item, update the attributes in a single
item, query for items using an index, and scan (e.g., list items)
over the whole table, optionally filtering the items returned. In
some embodiments, the service (and/or the underlying sys-
tem that implements the service) may support a strong con-
sistency model, in addition to supporting eventually consis-
tent read operations. In some embodiments, service requests
made via the API may include an indication of one or more
user preferences, such as a preferred consistency model, a
preferred service request throughput level, or a service
request throughput level for which a guarantee is requested.
In other embodiments, some or all of these user preferences
may be specified when a table is created, or may be client-
specific, account-specific, specific to various table types, or
specified by system-wide default values, rather than being
specified on a per-request basis. The APl may support
extreme scaling and/or more predictable performance than
that provided by prior data storage systems and services.

One embodiment of a system architecture that is config-
ured to implement a data storage service is illustrated in FI1G.
1B. In various embodiments, the components illustrated in
FIG. 1B may be implemented directly within computer hard-
ware, as instructions directly or indirectly executable by com-
puter hardware (e.g., a microprocessor or computer system),
or using a combination of these techniques. For example, the
components of FIG. 1B may be implemented by a distributed
system including a number of computing nodes (or simply,
nodes), such as the computer node embodiment illustrated in
FIG. 6 and discussed below. In various embodiments, the
functionality of a given storage service system component
may be implemented by a particular computing node or may
be distributed across several computing nodes. In some
embodiments, a given computing node may implement the
functionality of more than one storage service system com-
ponent.

In general, in regard to FIG. 1B, clients 110a-110~ may
encompass any type of client configurable to submit web
services requests to Web services platform 130 via network
120. For example, a given client 110 may include a suitable
version of a web browser, or a plugin module or other type of
code module configured to execute as an extension to or
within an execution environment provided by a web browser
to provide clients (e.g., client applications, users, and/or sub-
scribers) access to the data storage services provided by Web
services platform 130. Alternatively, a client 110 may encom-
pass an application such as a database application, media

US 9,304,815 B1

5

application, office application or any other application that
may make use of persistent storage resources. In some
embodiments, such an application may include sufficient pro-
tocol support (e.g., for a suitable version of Hypertext Trans-
fer Protocol (HTTP)) for generating and processing web ser-
vices requests without necessarily implementing full browser
support for all types of web-based data. That is, client 110
may be an application configured to interact directly with
Web services platform 130. In various embodiments, client
110 may be configured to generate web service requests
according to a Representational State Transfer (REST)-style
web services architecture, a document- or message-based
web services architecture, or another suitable web services
architecture.

In some embodiments, client 110 may be configured to
provide access to web services-based storage to other appli-
cations in a manner that is transparent to those applications.
For example, client 110 may be configured to integrate with
an operating system or file system to provide storage in accor-
dance with a suitable variant of the storage model described
herein. However, the operating system or file system may
present a different storage interface to applications, such as a
conventional file system hierarchy of files, directories and/or
folders. In such an embodiment, applications may not need to
be modified to make use of the storage system service model
described herein. Instead, the details of interfacing to Web
services platform 130 may be coordinated by client 110 and
the operating system or file system on behalf of applications
executing within the operating system environment.

Clients 110 may convey web services requests to and
receive responses from Web services platform 130 via net-
work 120. In various embodiments, network 120 may encom-
pass any suitable combination of networking hardware and
protocols necessary to establish web-based communications
between clients 110 and platform 130. For example, network
120 may generally encompass the various telecommunica-
tions networks and service providers that collectively imple-
ment the Internet. Network 120 may also include private
networks such as local area networks (LANs) or wide area
networks (WANSs) as well as public or private wireless net-
works. For example, both a given client 110 and Web services
platform 130 may be respectively provisioned within enter-
prises having their own internal networks. In such an embodi-
ment, network 120 may include the hardware (e.g., modems,
routers, switches, load balancers, proxy servers, etc.) and
software (e.g., protocol stacks, accounting software, firewall/
security software, etc.) necessary to establish a networking
link between given client 110 and the Internet as well as
between the Internet and Web services platform 130. It is
noted that in some embodiments, clients 110 may communi-
cate with Web services platform 130 using a private network
rather than the public Internet. For example, clients 110 may
be provisioned within the same enterprise as the data storage
service (and/or the underlying system) described herein. In
such a case, clients 110 may communicate with platform 130
entirely through a private network 120 (e.g., a LAN or WAN
that may use Internet-based communication protocols but
which is not publicly accessible).

In general, Web services platform 130 may be configured
to implement one or more service endpoints configured to
receive and process web services requests, such as requests to
access tables maintained on behalf of clients/users by a data
storage service, and/or the items and attributes stored in those
tables. For example, Web services platform 130 may include
hardware and/or software configured to implement various
service endpoints and to properly receive and process HTTP-
based web services requests directed to those endpoints. In

10

15

20

25

30

35

40

45

50

55

60

65

6

one embodiment, Web services platform 130 may be imple-
mented as a server system configured to receive web services
requests from clients 110 and to forward them to various
components that collectively implement a data storage sys-
tem for processing. In other embodiments, Web services plat-
form 130 may be configured as a number of distinct systems
(e.g., in a cluster topology) implementing load balancing and
other request management features configured to dynami-
cally manage large-scale web services request processing
loads.

As illustrated in FIG. 1B, Web services platform 130 may
include a front end module 140 (which may be configured to
receive, authenticate, parse, throttle and/or dispatch service
requests, among other things), one or more administrative
components, or auto admin instances, 150 (which may be
configured to provide a variety of visibility and/or control
functions, as described in more detail below), and a plurality
of storage node instances (shown as 160a-1607), each of
which may maintain and manage one or more tables on behalf
of clients/users or on behalf of the data storage service (and its
underlying system) itself. Some of the functionality provided
by each of these types of components is described in more
detail below, according to various embodiments.

In various embodiments, Web services platform 130 may
be configured to support different types of web services
requests. For example, in some embodiments, platform 130
may be configured to implement a particular web services
API that supports a variety of operations on tables that are
maintained and managed on behalf of clients/users by the
data storage service system (and/or data stored in those
tables). Examples of the operations supported by such an API
are described in more detail below.

In addition to functioning as an addressable endpoint for
clients’ web services requests, in some embodiments Web
services platform 130 may implement various client manage-
ment features. For example, platform 130 may coordinate the
metering and accounting of client usage of web services,
including storage resources, such as by tracking the identities
of requesting clients 110, the number and/or frequency of
client requests, the size of tables and/or items stored or
retrieved on behalf of clients 110, overall storage bandwidth
used by clients 110, class of storage requested by clients 110,
and/or any other measurable client usage parameter. Platform
130 may also implement financial accounting and billing
systems, or may maintain a database of usage data that may be
queried and processed by external systems for reporting and
billing of client usage activity. In some embodiments, plat-
form 130 may include a lock manager and/or a bootstrap
configuration (not shown).

In various embodiments, a data storage service may be
implemented on one or more computing nodes that are con-
figured to perform the functionality described herein. In some
embodiments, the service may be implemented by a Web
services platform (such as Web services platform 130 in FIG.
1) that is made up of multiple computing nodes, each of which
may perform one or more of the functions described herein.
Various collections of the computing nodes may be config-
ured to provide the functionality of an auto-admin cluster, a
cluster of resources dedicated to the data storage service, and
a collection of external resources, which may be shared with
other Web services or applications, in some embodiments.

FIGS. 2A-2C illustrate various elements or modules that
may be included in each of the types of components of Web
services platform 130, according to one embodiment. As
illustrated in FIG. 2A, front end module 140 may include one
or more modules configured to perform parsing and/or throt-
tling of service requests (shown as 210), authentication and/

US 9,304,815 B1

7

or metering of service requests (shown as 215), dispatching
service requests (shown as 225), and/or maintaining a parti-
tion map cache (shown as 230). In addition to these compo-
nent-specific modules, front end module 140 may include
components that are common to multiple types of computing
nodes that collectively implement Web services platform 130,
such as a message bus (shown as 235) and/or a dynamic
configuration module (shown as 240). In other embodiments,
more, fewer, or different elements may be included in front
end module 140, or any of the elements illustrated as being
included in front end module 140 may be included in another
component of Web services platform 130 or in a component
configured to interact with Web services platform 130 to
provide the data storage services described herein.

As illustrated in FIG. 2B, auto admin instance 150 may
include one or more modules configured to provide visibility
and control to system administrators (shown as 245), or to
perform heat balancing (shown as 250), and/or anomaly con-
trol (shown as 255), resource allocation (shown as 260). Auto
admin instance 150 may also include an admin console 265,
through which system administrators may interact with the
data storage service (and/or the underlying system). In some
embodiments, admin console 265 may be the primary point of
visibility and control for the data storage service (e.g., for
configuration or reconfiguration by system administrators).
For example, admin console 265 may be implemented as a
relatively thin client that provides display and control func-
tionally to system administrators and/or other privileged
users, and through which system status indicators, metadata,
and/or operating parameters may be observed and/orupdated.
In addition to these component-specific modules, auto admin
instance 150 may also include components that are common
to the different types of computing nodes that collectively
implement Web services platform 130, such as a message bus
(shown as 235) and/or a dynamic configuration module
(shown as 240). In other embodiments, more, fewer, or dif-
ferent elements may be included in auto admin instance 150,
or any of the elements illustrated as being included in auto
admin instance 150 may be included in another component of
Web services platform 130 or in a component configured to
interact with Web services platform 130 to provide the data
storage services described herein.

In at least some embodiments, auto admin instance 150
may implement sweeper 1504a. Sweeper module 1504 may be
configured to examiner, evaluate, or analyze a replica group
status. For instance, in some embodiments, sweeper 150a
may be configured to access, request, or update status meta-
data for one or more storage nodes of data storage service.
Sweeper 150a may request status information, such as the
availability of a replica stored on the storage node, from
storage nodes. Sweeper 150a may also receive the status
information and update metadata stored for a replica group,
such as metadata 106 discussed above with regard to FIG. 1A.
More generally, sweeper 150a may be configured to deter-
mine whether a number of available replicas for a replica
group is not compliant with a healthy state definition for a
replica group, such as whether the number of available rep-
licas is than a specified number of replicas to be maintained
for the replica group in one or more locations. Thus, if a
replica group is specified to provide 4 replicas of data, and
currently only 2 replicas of the data in the replica group are
available, sweeper 150a may be configured to identify the
deficient replica group. FIGS. 3 and 4, discussed in further
detail below, provide many examples of the various methods
and techniques sweeper 150a may employ to detect and iden-
tify deficient replica groups.

10

15

20

25

30

35

40

45

50

55

60

65

8

Auto admin instance 150 may also include, in various
embodiments, a scheduler 1505. As noted above in FIG. 1A,
scheduler 1505 may be configured to dynamically schedule
one or more heal operations to restore the number of available
replicas for areplica group to compliance with a healthy state
definition for the replica group based, at least in part, on one
or more resource constraints for performing healing opera-
tions. Heal operations to restore deficient replica groups iden-
tified by sweeper 150a (or some other component/module)
may be identified by some data structure, such as a queue.
Scheduler 1506 may dynamically determine an order in
which to pick one or more heal operations from the data
structure to be performed. In at least some embodiments,
scheduler 1505 may have a predetermined number of heal
operations that may be performed concurrently. Heal opera-
tions may be picked from the data structure to replace com-
pleted heal operations.

In at least some embodiments, scheduler 1505 may deter-
mine one or more resource restrictions for the data storage
service. For instance, scheduler 1505 may monitor network
traffic or predict expected network traffic for one or more
nodes of the data storage service. Various other kinds of
resource restrictions may be identified or determined, as dis-
cussed below with regard to FIG. 5, including, but not limited
to network bandwidth, processor and/or computing
resources/capacities, storage space, and concurrent/parallel
operation limitations. Scheduler 1505, may also be config-
ured to determine one or more resource requirements for heal
operations. For instance, one or more heal operations may be
queued for performance, and scheduler 1505 may evaluate
each of the heal operations to determine the one or more
resource requirements for each heal operation. Resource
requirements may include a replica source and replica desti-
nation, amount of data in the replica, or any other computing/
processing resource useful to create the new replica on the
target node. Various forms of encryption, formatting, com-
pression, or other manipulation of the data of a replica may be
implemented when creating a new replica from an current
replica. Based, at least in part, on the resource requirements of
the heal operations, scheduler 1505 may order the heal opera-
tions without exceeding the identified resource requirements
for the data storage service. Scheduler 1505 may also take
other considerations into ordering or scheduling heal opera-
tions. Access frequency for replica groups, such as the vol-
ume or rate of read requests for a particular replica group, may
also be used to order heal operations. Those replica groups,
for instance, that are frequently accessed may have heal
operations performed to restore them before replica groups
that are less frequently accessed. Scheduler 1506 may apply
a variety of different methods and techniques, as discussed
below with regard to FIG. 5. A load balancing scheme, for
example, may be used to create the order of heal operations
within resource restrictions of the data storage service.

As illustrated in FIG. 2C, storage node instance 160 may
include one or more modules configured to provide partition
management (shown as 270), to implement replication and
failover processes (shown as 275), and/or to provide an appli-
cation programming interface (API) to underlying storage
(shown as 280). As illustrated in this example, each storage
node instance 160 may include a storage engine 285, which
may be configured to maintain (i.e. to store and manage) one
or more tables (and associated table data) in storage 280
(which in some embodiments may be a non-relational data-
base) on behalf of one or more clients/users. In addition to
these component-specific modules, storage node instance
160 may include components that are common to the different
types of computing nodes that collectively implement Web

US 9,304,815 B1

9

services platform 130, such as a message bus (shown as 235)
and/or a dynamic configuration module (shown as 240). In
other embodiments, more, fewer, or different elements may
be included in storage node instance 160, or any of the ele-
ments illustrated as being included in storage node instance
160 may be included in another component of Web services
platform 130 or in a component configured to interact with
Web services platform 130 to provide the data storage ser-
vices described herein.

The systems underlying the data storage service described
herein may store data on behalf of clients (e.g., client appli-
cations, users, and/or subscribers) in tables containing items
that have one or more attributes. In some embodiments, the
data storage service may present clients/users with a data
model in which each table maintained on behalf of a client/
user contains one or more items, and each item includes a
collection of attributes. The attributes of an item may be a
collection of name-value pairs, in any order. In some embodi-
ments, each attribute in an item may have a name, a type, and
a value. Some attributes may be single valued, such that the
attribute name is mapped to a single value, while others may
be multi-value, such that the attribute name is mapped to two
or more values. The items may be managed by assigning each
item a primary key value (which may include one or more
attribute values), and this primary key value may also be used
to uniquely identify the item. In some embodiments, a large
number of attributes may be defined across the items in a
table, but each item may contain a sparse set of these
attributes (with the particular attributes specified for one item
being unrelated to the attributes of another item in the same
table), and all of the attributes may be optional except for the
primary key attribute(s). In other words, unlike in traditional
databases, the tables maintained by the data storage service
(and the underlying storage system) may have no pre-defined
schema other than their reliance on the primary key. Note that
in some embodiments, if an attribute is included in an item, its
value cannot be null or empty (e.g., attribute names and
values cannot be empty strings), and, and within a single item,
the names of its attributes may be unique.

Detailed Description Considerations

Within the detailed description, numerous details are set
forth to provide a thorough understanding of the claimed
subject matter. However, it will be understood by those
skilled in the art that the claimed subject matter may be
practiced without these specific details. In other instances,
methods, apparatus or systems that would be known by one of
ordinary skill have not been described in detail so as not to
obscure claimed subject matter.

Various units, circuits, or other components may be
described or claimed as “configured to” perform a task or
tasks. In such contexts, “configured to” is used to connote
structure by indicating that the units/circuits/components
include structure (e.g., circuitry) that performs those task or
tasks during operation. As such, the unit/circuit/component
can be said to be configured to perform the task even when the
specified unit/circuit/component is not currently operational
(e.g., is not on). The units/circuits/components used with the
“configured to” language include hardware—for example,
circuits, memory storing program instructions executable to
implement the operation, etc. Reciting that a unit/circuit/
component is “configured to” perform one or more tasks is
expressly intended not to invoke 35 U.S.C. §112, sixth para-
graph, for that unit/circuit/component. Additionally, “config-
ured to” can include generic structure (e.g., generic circuitry)
that is manipulated by software and/or firmware (e.g., an

20

40

45

50

10

FPGA or a general-purpose processor executing software) to
operate in manner that is capable of performing the task or
tasks at issue.

As used herein, the terms “first”, “second”, and so on are
used as labels for nouns that they precede, and do not imply
any type of ordering, for example, spatial, temporal, or logi-
cal, among others. For example, in a display environment
having multiple display devices, the terms “first” and “sec-
ond” display devices can be used to refer to any two of the
multiple display devices. In other words, the “first” and “sec-
ond” display devices are not limited to logical display devices
Oand 1.

As used herein, the term “based on” is used to describe one
ormore factors that affect a determination. This term does not
foreclose additional factors that may affect a determination.
That is, a determination may be solely based on those factors
orbased, at least in part, on those factors. Consider the phrase
“determine A based on B.” While B may be a factor that
affects the determination of A, such a phrase does not fore-
close the determination of A from also being based on C. In
other instances, A may be determined based solely on B.

Some portions of the detailed description which follow are
presented in terms of algorithms or symbolic representations
of operations on binary digital signals stored within a
memory of a specific apparatus or special purpose computing
device or platform. In the context of this particular specifica-
tion, the term specific apparatus or the like includes a general
purpose computer once it is programmed to perform particu-
lar functions pursuant to instructions from program software.
Algorithmic descriptions or symbolic representations are
examples of techniques used by those of ordinary skill in the
signal processing or related arts to convey the substance of
their work to others skilled in the art. An algorithm is here,
and is generally, considered to be a self-consistent sequence
of'operations or similar signal processing leading to a desired
result. In this context, operations or processing involve physi-
cal manipulation of physical quantities. Typically, although
not necessarily, such quantities may take the form of electri-
cal or magnetic signals capable of being stored, transferred,
combined, compared or otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to such signals as bits, data, values, elements,
symbols, characters, terms, numbers, numerals or the like. It
should be understood, however, that all of these or similar
terms are to be associated with appropriate physical quanti-
ties and are merely convenient labels.

Unless specifically stated otherwise, as apparent from the
following discussion, it is appreciated that throughout this
specification discussions utilizing terms such as “process-
ing”, “computing”, “calculating”, “determining”, or the like
refer to actions or processes of a specific apparatus, such as a
special purpose computer or a similar special purpose elec-
tronic computing device. In the context of this specification,
therefore, a special purpose computer or a similar special
purpose electronic computing device is capable of manipu-
lating or transforming signals, typically represented as physi-
cal electronic or magnetic quantities within memories, regis-
ters, or other information storage devices, transmission
devices, or display devices of the special purpose computer or
similar special purpose electronic computing device.

While the invention is described herein by way of example
for several embodiments and illustrative drawings, those
skilled in the art will recognize that the invention is not
limited to the embodiments or drawings described. It should
be understood that the drawings and detailed description are
not intended to limit the invention to the particular forms
disclosed, but on the contrary, the intention is to cover all

US 9,304,815 B1

11

modifications, equivalents and alternatives falling within the
spirit and scope of the present invention. The headings used
are for organizational purposes only and are not meant to be
used to limit the scope of the description. As used throughout
this application, the word “may” is used in a permissive sense
(meaning “having the potential to”), rather than the manda-
tory sense (meaning “must”). Similarly, the words “include”,
“including”, and “includes” mean “including, but not limited
to”.

Workflows of Dynamically Detecting and Healing Deficient
Replica Groups

As noted above, various types of storage systems, such as
the data storage service depicted in FIGS. 1a-2¢, may imple-
ment dynamically detecting and healing replica groups main-
taining data for storage. Replica groups may provide durabil-
ity and availability for stored data, such as data maintained on
behalf of many different and/or distinct clients. In different
cases, the data being stored may be any type of data, including
a variety of different data types, formats, in compressed/
encrypted forms, that may be structured or unstructured data,
such as in a table. In one example embodiment, one or more
clients may store tables of data, and a data storage service may
divide each table into multiple partitions and store multiple
replicas of each table partition among nodes within the data
storage service. In this embodiment, a storage node may
operate independently of other storage nodes, and replicas for
a given table may be stored on different storage nodes, where
the different storage nodes may be spread geographically
across different data centers.

Complying with a healthy state definition for a replica
group may be implemented to ensure that the replica group
continues to provide durability for stored data. As part of
ensuring that replica groups continue to comply with healthy
state definition replica groups that become deficient, such as
due to storage node failure or other type of system failure or
error that reduces the number of available replicas, may be
detected and restored to be compliant with the healthy state
definition via a replica healing operation. FIG. 3 is a high-
level flowchart illustrating a method to dynamically detect
and heal replica failures, according to some embodiments.

Asindicated at 302, status metadata for one or more replica
groups may be accessed. This status metadata may provide an
indication of the health or status of the storage nodes or other
systems or devices storing the replicas of the replica group.
For instance, status metadata may indicate whether a particu-
lar storage node is responding to or available to various
requests from other nodes implemented by a data storage
service, such as by storing performance metrics of storage
node (responding to access requests, queries, and/or other
operations). Similarly, various other indicators or informa-
tion may be stored about a particular replica group, such as the
organization of systems or devices storing the replicas (e.g.,
location/address of storage nodes, if a particular storage node
is master storage node, etc. . . .) as well as information about
the data maintained by the replica group (e.g., type, format,
table which the partition belongs to, etc. .. .). In at least some
embodiments, status metadata may be stored as a table on a
storage node of a data storage service, as illustrated in FIG.
1A. However, various other structures, arrangements, or loca-
tions of the status data may be used. For example, the status
metadata may be maintained in different locations for each
replica group, such as on a master node for the replica group.

The status metadata may be updated in various circum-
stances, such as when status or health information is received
from systems or devices storing replicas for the replica
groups, or other systems or devices that manage, administer,
or monitor the replica groups. For example, in some embodi-

25

40

45

50

12

ments, storage nodes may send or report various status or
health information to the location where status metadata for
the replica group is maintained (or to another system, module,
or device, such as sweeper 150a in FIG. 1A, that updates
status metadata), periodically or aperiodically. In another
example, a master node, or other device such as sweeper
module 150 in FIG. 1A, may request status or health infor-
mation from a storage node, or other system or device storing
a replica of a replica group. This request may be made when
it is determined that the storage node may be unavailable or
unresponsive. Consider the scenario where storage nodes
regularly send status information to update status metadata
for replica groups. If, when accessing metadata, it is deter-
mined that a particular storage nodes has not sent status
information within some expected window of time, then a
request for status information may be sent to the storage node.

Accessing status metadata may be performed as part of a
polling or scanning process or technique, such as by sweeper
150a in FIG. 1A, or some other system or device. In some
embodiments, the status metadata may be accessed periodi-
cally, for example at certain points in time, continually, or as
part of some background process that access the metadata
when doing so does not impede foreground processing opera-
tions (such as responding to access requests). FIG. 4 illus-
trates one such technique for accessing status metadata to
detect deficient replica groups. As depicted at 402, metadata
may be accessed for a particular replica group. For example,
each metadata entry in a table of status metadata for the
replica groups of a data storage service may iteratively exam-
ined. In this example, a first metadata entry may be consid-
ered, which may correspond to a particular replica group. In
this case, the data storage service may read or access metadata
information for the current replica being considered or ana-
lyzed and determine whether or not there are enough avail-
able or healthy replicas for the particular replica group, as
depicted at 404.

If, as depicted at 404, it is determined from the status
metadata for the particular replica group that there are insuf-
ficient available or healthy replicas within the particular rep-
lica group, such as defined by a healthy state definition for the
replica group, the particular replica group may be identified
for one or more healing operations, as indicated at 406, to
restore the replica group to the healthy state definition, such
as to a specified number of replicas for the replica group.
Then, metadata for additional replica groups may be selected,
as indicated at 408.

If, as depicted at 404, the number of available or healthy
replicas for the particular is determined to be sufficient, it may
then be determined whether there are additional replica
groups with status metadata stored, and which may be ana-
lyzed, as indicated at 408. If there is status metadata for
another replica group to analyze (e.g., for areplica group that
has not yet been evaluated), then processing may continue at
402, and otherwise, processing may continue to 410, where a
time interval or some other event may occur before accessing
status metadata for the replica groups again. In some embodi-
ments, the data storage service may, instead of waiting for a
next scheduled metadata check, iterate over the status meta-
data to confirm the accuracy of the contents. In other embodi-
ments, the data storage service may, instead of waiting for a
next scheduled metadata check, begin immediately iterating
over the status metadata at 402.

In some embodiments, the data storage service may imple-
ment a process to check the status of computing nodes and/or
replicas and to correspondingly update the metadata, and
another process for analyzing the metadata to determine that
a healing operation should be scheduled, as illustrated at

US 9,304,815 B1

13

elements 302 and 304 in FIG. 3. However, in other embodi-
ments, these functions may be combined into a single pro-
cess. For example, in other embodiments, a process that
checks the status of computing nodes may directly initiate the
scheduling of a healing operation in response to determining
that a computing node is unresponsive or otherwise in need of
being replicated.

Returning to FIG. 3, as previously stated, a number of
replicas of the data may be specified for a replica group to
maintain. In various embodiments, a determination based, at
least in part, on accessed status metadata for the replica
groups may be made as to whether the number of available
replicas for at least one of the replica groups is not compliant
with the healthy state definition for the respective replica
group. 304. As noted above, a healthy state definition may
provide a definition of or requirements for a healthy replica
group. A specified number of replicas may be provided for the
replica group. Similarly, various locations or states for the
replica group may also be defined. Diversity in location, for
instance, may be one requirement, such that in one example at
least two different locations, with a minimum number of
replicas may be required. Various other configurations or
arrangements of a healthy state definition may be constructed,
and thus, the previous examples are not intended to be limit-
ing. A master node may, for example, be required to be
located in a different data center than other storage nodes
storing replicas for the replica group. in some embodiments
an unavailable replica may be an unhealthy replica. An
unhealthy state for a replica may be any state not within
certain parameters. For example, if storage node is respond-
ing slower than what a client expects, the storage node may be
determined, counted, or identified as unavailable, even
though the storage node is responsive and functional. In such
a case, an indication that the replica for the replica group on
this storage node is deemed unavailable and may be stored
within the status metadata for the replica group. In other
examples, an unavailable replica may be stored on a storage
node, system, or device that may have suffered a system
failure, such as a physical failure or a software failure, and
therefore be unresponsive. In this case, the status metadata
stored for the replica group may indicate corresponding status
information such as a computing node not operating within
specified parameters or the computing node not being respon-
sive at all.

In various embodiments, one or more replica healing
operations may be dynamically scheduled to restore the num-
ber of available replicas for the at least one replica group to
the respective healthy state definition for the at least one
replica group based, at least in part, on one or more resource
constraints for performing healing operations, as indicated at
306. Scheduling replica healing operations may be performed
dynamically, such as in response to changing conditions on a
data storage service implementing replica groups. For
example, in some embodiments, replica healing operations
may be performed as part of a background process. When
resources are available to initiate or increase the amount of
resources committed to performing the replica healing opera-
tions change, the number of healing operations that may be
performed (e.g., concurrently) or the specific requirements of
the healing operations (e.g., a less resource intensive replica
healing operation may be selected over a more resource inten-
sive replica healing operation) may also change. A dynamic
scheduling technique may therefore account for the changing
conditions of performing replica healing operations.

Various methods or techniques may be implemented to
dynamically schedule one or more replica healing operations.
Various different criteria, restrictions, or requirements may

20

25

30

40

45

14

be accounted for when scheduling healing operations. For
instance, replica healing operations for replica groups that are
frequently accessed may be prioritized over replica healing
operations for replica groups that less frequently accessed. In
another example, a network-bandwidth restriction may delay
the scheduling of one or more replica healing operations that
involve transfer a large amount of data.

FIG. 5 is a high-level flowchart illustrating various meth-
ods to dynamically schedule replica healing operations,
according to some embodiments. As indicated at 502, in some
embodiments one or more resource constraints for perform-
ing healing operations may be identified. Resource con-
straints may include a variety of different storage node, sys-
tem, device, network, or more generally any other hardware/
software resource limitations. In some embodiments, for
example, a predicted or expected network traffic load may be
determined for one or more components of storage system
(e.g., a node, replica group, etc. . . .). This expected or
predicted network traffic load may act as a resource con-
straint, limiting the resources available to perform healing
operations that would inhibit the performance or preclude
other operations, such as access requests or other foreground
operations. Similarly, another resource constraint may be the
number of concurrent operations at a given node, system or
device. For example, in some embodiments, a concurrent
healing threshold may allow a limited or single number of
replica healing operations to be performed on storage node at
atime. Thus, if only one healing operation may be performed,
then a storage node may be limited to either receiving a new
replica to persist as part of a healing operation, or sending a
copy of a replica to persist as part of a healing operation.

Another example of a resource constraint may be a global
number of replica healing operations that may be performed
atonce. For example, if 30 replica healing operations slots are
available for replica healing operations at a given time, then
newly identified replica healing operations may be delayed
until a healing operation slot becomes available. Other
examples include, processing resources, such as the process-
ing or computing resources required package, copy, modify,
manipulate, and/or send data to generate a new replica for a
replica group, or available storage space on a storage node. As
many different resource constraints may be envisioned, the
above examples are not intended to be limiting.

In some embodiments, as indicated at 504, one or more
resource requirements for each of the one or more replica
healing operations may be determined. Resource require-
ments may include, but are not limited to, the amount of data
to be replicated, the amount of computing, and/or processing
resources to copy, package, send, etc. . . . the replica, the
replica healing operation source (e.g., the nodes, system, or
device storing a replica that will be copied to create a new
replica), and the replica healing operation destination. In
various embodiments, each replica healing operation may
have one or more replica healing operation sources and one or
more replica healing operation destinations. To determine
these resource requirements various types of information
may be evaluated, such as metadata for the replica group, or
the data associated with a replica healing operation request.
Some resource requirements for replica healing operations
may vary from one replica healing operation to another, while
other resource requirements may be the same for all replica
healing operations.

As indicated at 506, the one or more replica healing opera-
tions may be ordered to be performed without exceeding the
one or more resource constraints. This ordering may be based,
at least in part, on the one or more resource requirements for
each of the one or more replica healing operations. A load-

US 9,304,815 B1

15

balancing scheme may, for instance, be applied to distribute
the network load or traffic utilized for replica healing opera-
tions to ensure that replica healing operations are performed
without exceeding any bandwidth or other resource require-
ments. Similarly, various concurrent operation constraints or
thresholds may be applicable to determining the ordering. For
example, in some embodiments, the number of concurrent
replica healing operations performed by a given storage node
may be limited to one. If two or more replica healing opera-
tions use as part of the replica healing operation a given
storage node as either a source or destination, then the con-
current healing operation restraint may be applied to order
one replica healing operation such that the conflicting replica
healing operation is completed prior to performing.

Various other considerations may be taken into account
when ordering the one or more replica healing operations.
Access frequency, for example, of a particular replica group
in various embodiments may be used as part of ordering the
one or more replica healing operations. More frequently
accessed replica groups may have replica healing operations
directed toward the replica group performed prior to those
replica healing operations for replica groups accessed less
frequently. In some embodiments, various other consider-
ations such as service level agreements (maintaining a certain
number of replicas or repairing/healing replicas within a cer-
tain amount of time) or any other consideration that may
require an expedited or accelerated performance of a replica
healing operation (e.g., when the number of available replicas
fall below a critical durability threshold—such as only 1
replica). In some embodiments, the varying resource con-
straints, restrictions, and/or criteria used to determine an
ordering of replica healing operations may be configurable by
a system administrator, client, or other user, such as by lim-
iting an amount of network bandwidth used, or adding or
removing constraints, restrictions, and criteria to consider
when scheduling.

Returning to FIG. 3, in various embodiments, the sched-
uled one or more replica healing operations may be per-
formed automatically, as indicated at 308. Various compo-
nents may be directed to perform the replica healing
operations as scheduled, such as by a master node, or by auto
admin instance 150, described above in FIGS. 15 and 2.
Various command messages may be sent requesting that a
storage node, system or device storing a source replica, to
copy/send the replica to another storage node, system, or
device. In at least some embodiments, replica healing opera-
tions may be performed as part of a background process, such
that foreground processes (e.g., access requests) may not be
impeded. Therefore, the replica healing operations may mini-
mize performance impacts on operations explicitly requested
by a client, user, or some other higher priority process or
operation. For example, the data storage service may limit
healing operations so that they do not occupy more than a
threshold quantity of system resources, such as computa-
tional resources or storage resources or network bandwidth.
These threshold limitations may be adjustable at any point,
for example, through settings specified from a system admin-
istration interface.

In some embodiments, prior to a queued healing operation
request being performed, the data storage service may query
the unavailable node for a replica queued up to be healed to
confirm the validity of the healing operation request. This
additional check of a storage node may detect that a comput-
ing node may be available/healthy again and therefore the
corresponding healing operation or operations for replicas
stored on the computing node may be removed from the
scheduling queue. This example may avoid unnecessary heal-

10

15

20

25

30

40

45

55

60

65

16

ing operations being performed if the computing node in this
example became unavailable for a temporary reason such as a
computing node reboot or a lost and restored network con-
nection.

Although described more generally above in FIGS. 3-5, in
some embodiments, such as those implemented as part of a
data storage service, a queue may be implemented to hold
healing operation requests. The data storage service, or a
scheduling process of the data storage service, may prioritize
and shuffle the order of healing operation requests based on
different criteria. As example criteria, the data storage service
may prioritize healing operation requests for computing
nodes that have a high amount of traffic or read or write
requests above healing operation requests for computing
nodes that have a smaller amount of traffic or read or write
requests.

In other embodiments, the data storage service may move
healing operation requests from their position in the queue,
where the position in the queue corresponds to the order in
which the healing operation is performed, based on conflicts
between queued healing operations. For example, it may be
the case that different replicas on a single computing node
may need to be replicated, however, the data storage system
may not be able to concurrently read these different replicas
from the same storage node. In such a case, one of the healing
operations corresponding to one of the replicas on the storage
node may be moved down in the queue to a point where when
the data storage service begins the moved down healing
operation request, the conflicting healing operation request
would be completed.

In other embodiments related to resource conflict avoid-
ance, the data storage service may avoid creating a replica for
some given replica group on the same computing node that is
the source for some other, ongoing healing operation. In such
a scenario, the ability for healing operations to be performed
in parallel would be eliminated and therefore, if one of the
conflicting replica healing operations is delayed, another
healing operation that may be performed in parallel may be
performed.

In some embodiments, the data storage service may restrict
a quantity of concurrent healing operations according to net-
work bandwidth usage, which may be a configurable restric-
tion. For example, if the data storage service determines that
current time network traffic is light as compared to some
future point in time within some period of time, then the data
storage service may execute a healing operation at the current
time. In other examples, the data storage service, based on a
determination of network traffic expectations, may schedule
healing operations with small network traffic overhead at
points in time when heavier network traffic is expected and
may schedule healing operations with large network traffic
overhead when lighter network traffic is expected.

In other embodiments, the data storage service may priori-
tize queued healing operation requests based on customer
service level agreements or requirements. For example, a
service client may pay for a higher durability model of data
storage, which may include a specification that data for this
service client be stored using a certain number of replicas. In
this example, the data storage service may schedule a healing
operation the get the higher durability model restored to the
specified number of replicas above the priority for scheduling
ahealing operation to get a lower durability model restored to
a specified number of replicas.

In some embodiments, it may be the case that a replica is
created unnecessarily, which may bring the number of repli-
cas in a replica group above the number of replicas expected
in the replica group. In such a case, the data storage service

US 9,304,815 B1

17

may schedule a healing operation to bring down the number
of replicas to the number of replicas specified to be in the
replica group with a lower priority that a healing operation to
bring up the number of replicas to the number of replicas
specified to be in the replica group.

In at least some embodiments, a replica group may be
organized such that the replica group has a computing node
designated as a master node. The master node may perform,
some or all of the elements depicted in the various FIGS. 3-5.
In some embodiments, the master node may determine that a
given computing node of the replica group may become
unavailable or otherwise fails to satisfy performance or stor-
age parameters. In response to such a determination, the
master node may update the status metadata for the replica
group (or groups) directly or communicate with a process that
updates the metadata. In other examples, the master node may
directly submit a healing operation into a queue that is read by
a scheduling process for healing operations. Further in this
example, a data storage service may include protocols for
other computing nodes in a replica group to assume the mas-
ter node role in the case that the master node for a replica
group becomes unavailable or suffers from some type of fault.
Further, in some embodiments, each time a table is created or
some other type of data is stored according to a request from
a client user, a data storage service may update the status
metadata to include replica information for the replicas of the
newly stored table or other type of data. This update, as
discussed above, may be performed according to an update
message from a master node of a replica group or the update
may be performed according to an update message from a
write process creating the replicas.

Example Computer System

FIG. 6 illustrates computer system 9900 that may execute
the embodiments discussed above. In different embodiments,
the computer system may be any of various types of devices,
including, but not limited to, a personal computer system,
desktop computer, laptop, notebook, or netbook computer,
mainframe computer system, handheld computer, worksta-
tion, network computer, a camera, a set top box, a mobile
device, a consumer device, video game console, handheld
video game device, application server, storage device, a tele-
vision, a video recording device, a peripheral device such as
a switch, modem, router, or in general any type of computing
or electronic device.

In one embodiment, computer system 9900 includes one or
more processors 9360a-9360n coupled to system memory
9370 via input/output (I/O) interface 9380. The computer
system further includes network interface 9390 coupled to
1/0 interface 9380, and one or more input/output devices
9382, such as cursor control device 9960, keyboard 9970, and
one or more displays 9980. In some embodiments, it is con-
templated that embodiments may be implemented using a
single instance of a computer system, while in other embodi-
ments may be implemented on multiple such systems, or
multiple nodes making up a computer system, may be con-
figured to host different portions or instances of embodi-
ments. For example, in one embodiment some elements may
be implemented via one or more nodes of the computer sys-
tem that are distinct from those nodes implementing other
elements.

In various embodiments, the computer system may be a
uniprocessor system including one processor, or a multipro-
cessor system including several processors (e.g., two, four,
eight, or another suitable number). The processors may be
any suitable processor capable of executing instructions. For
example, in various embodiments, the processors may be
general-purpose or embedded processors implementing any

10

15

20

25

30

35

40

45

50

55

60

18
of'a variety of instruction set architectures (ISAs), such as the
x86, PowerPC, SPARC, or MIPS ISAs, or any other suitable
ISA. In multiprocessor systems, each of processors may com-
monly, but not necessarily, implement the same ISA.

In some embodiments, at least one processor may be a
graphics processing unit. A graphics processing unit or GPU
may be considered a dedicated graphics-rendering device for
a personal computer, workstation, game console or other
computing or electronic device. Modern GPUs may be very
efficient at manipulating and displaying computer graphics,
and their highly parallel structure may make them more effec-
tive than typical CPUs for a range of complex graphical
algorithms. For example, a graphics processor may imple-
ment a number of graphics primitive operations in a way that
makes executing them much faster than drawing directly to
the screen with a host central processing unit (CPU). In vari-
ous embodiments, the content object processing methods dis-
closed herein may, at least in part, be implemented with
program instructions configured for execution on one of, or
parallel execution on two or more of, such GPUs. The GPU(s)
may implement one or more application programmer inter-
faces (APIs) that permit programmers to invoke the function-
ality of the GPU(s).

System memory within the computer system may be con-
figured to store program instructions and/or data accessible
from a processor. In various embodiments, the system
memory may be implemented using any suitable memory
technology, such as static random access memory (SRAM),
synchronous dynamic RAM (SDRAM), nonvolatile/Flash-
type memory, or any other type of memory. In the illustrated
embodiment, program instructions and data may implement
desired functions, such as those described above for the vari-
ous embodiments are shown stored within system memory
9370 as program instructions 9925 and data storage 9935,
respectively. In other embodiments, program instructions
and/or data may be received, sent or stored upon different
types of computer-accessible media or on similar media sepa-
rate from system memory or the computer system. Generally,
a computer-accessible medium may include storage media or
memory media such as magnetic or optical media, e.g., disk
or CD/DVD-ROM coupled to the computer system via the
1/O interface. Program instructions and data stored via a com-
puter-accessible medium may be transmitted from transmis-
sion media or signals such as electrical, electromagnetic, or
digital signals, which may be conveyed via a communication
medium such as a network and/or a wireless link, such as may
be implemented via the network interface.

In one embodiment, the I/O interface may be configured to
coordinate /O traffic between the processor, the system
memory, and any peripheral devices in the device, including
a network interface or other peripheral interfaces, such as
input/output devices. In some embodiments, the /O interface
may perform any necessary protocol, timing or other data
transformations to convert data signals from one component
into a format suitable for another component to use. In some
embodiments, the 1/O interface may include support for
devices attached through various types of peripheral buses. In
some embodiments, the function of the I/O interface may be
split into two or more separate components, such as a north
bridge and a south bridge, for example. In addition, in some
embodiments some or all of the functionality of the I/O inter-
face, such as an interface to system memory, may be incor-
porated directly into the processor.

The network interface of the computer system may be
configured to allow data to be exchanged between the com-
puter system and other devices attached to a network, such as
other computer systems, or between nodes of the computer

US 9,304,815 B1

19

system. In various embodiments, the network interface may
support communication via wired or wireless general data
networks, such as any suitable type of Ethernet network, for
example; via telecommunications/telephony networks such
as analog voice networks or digital fiber communications
networks; via storage area networks such as Fibre Channel
SANSs, or via any other suitable type of network and/or pro-
tocol.

The I/0 devices may, in some embodiments, include one or
more display terminals, keyboards, keypads, touchpads,
scanning devices, voice or optical recognition devices, or any
other devices suitable for entering or retrieving data from one
or more computer systems. Multiple /O devices may be
present in the computer system or may be distributed on
various nodes of the computer system. In some embodiments,
similar [/O devices may be separate from the computer sys-
tem and may interact with one or more nodes of the computer
system through a wired or wireless connection, such as over
the network interface.

The memory within the computer system may include
program instructions configured to implement each of the
embodiments described herein. In one embodiment, the pro-
gram instructions may include software elements of embodi-
ments of the modules discussed earlier. The data storage
within the computer system may include data that may be
used in other embodiments. In these other embodiments,
other or different software elements and data may be
included.

Those skilled in the art will appreciate that the computer
system is merely illustrative and is not intended to limit the
scope of the embodiments described herein. In particular, the
computer system and devices may include any combination
of hardware or software that can perform the indicated func-
tions, including a computer, personal computer system, desk-
top computer, laptop, notebook, or netbook computer, main-
frame computer system, handheld computer, workstation,
network computer, a camera, a set top box, a mobile device,
network device, internet appliance, PDA, wireless phones,
pagers, a consumer device, video game console, handheld
video game device, application server, storage device, a
peripheral device such as a switch, modem, router, or in
general any type of computing or electronic device. The com-
puter system may also be connected to other devices that are
not illustrated, or instead may operate as a stand-alone sys-
tem. In addition, the functionality depicted within the illus-
trated components may in some embodiments be combined in
fewer components or distributed in additional components.
Similarly, in some embodiments, the functionality of some of
the illustrated components may not be provided and/or other
additional functionality may be available.

Those skilled in the art will also appreciate that, while
various items are illustrated as being stored in memory or on
storage while being used, these items or portions of them may
be transferred between memory and other storage devices for
purposes of memory management and data integrity. Alter-
natively, in other embodiments some or all of the software
components may execute in memory on another device and
communicate with the illustrated computer system via inter-
computer communication. Some or all of the system compo-
nents or data structures may also be stored on a computer-
accessible medium or a portable article to be read from an
appropriate drive, various examples of which are described
above. In some embodiments, instructions stored on a com-
puter-accessible medium separate from the computer system
may be transmitted via transmission media or signals such as
electrical, electromagnetic, or digital signals, conveyed via a
communication medium such as a network and/or a wireless

10

15

20

25

30

35

40

45

50

55

60

65

20

link. Various embodiments may further include receiving,
sending or storing instructions and/or data implemented in
accordance with the foregoing description upon a computer-
accessible medium. Accordingly, the present invention may
be practiced with other computer system configurations.

CONCLUSION

Various embodiments may further include receiving, send-
ing or storing instructions and/or data implemented in accor-
dance with the foregoing description upon a computer-acces-
sible medium. A non-transitory, computer-readable storage
medium may include storage media or memory media such as
magnetic or optical media such as disks or DVD/CD-ROM,
volatile or non-volatile media such as RAM, ROM, and flash
drives. More generally, computer-accessible or computer-
readable storage media may also include transmission media
or signals such as electrical, electromagnetic, or digital sig-
nals, conveyed via a communication medium such as network
and/or a wireless link.

The various methods described herein represent example
embodiments of methods. These methods may be imple-
mented in software, hardware, or through a combination of
hardware and software. The order of the method steps may be
changed, and various elements may be added, reordered,
combined, omitted, or modified.

Various modifications and changes may be made as would
be obvious to a person skilled in the art having the benefit of
this disclosure. It is intended that the invention embrace all
such modifications and changes and, accordingly, the above
description to be regarded in an illustrative rather than a
restrictive sense.

What is claimed is:

1. A system, comprising:

a plurality of computing nodes, each comprising at least
one processor and memory, wherein the plurality of
computing nodes are configured to implement a data
storage service,

wherein the data storage service comprises:
one or more replica groups stored among the plurality of

computing nodes, wherein each of the one or more
replica groups maintains one or more replicas of data
on behalf of one or more storage service clients,
wherein each replica group of the one or more replica
groups includes a respective healthy state definition
for the replica group;

a replica group status sweeper, configured to identify
replica groups with a number of available replicas not
compliant with the respective healthy state definition
for the respective replica group, wherein said identi-
fication is based, at least in part, on status metadata for
the respective replica group; and

a dynamic heal scheduler, configured to schedule one or
more replica healing operations to restore the number
of available replicas for the identified replica groups
to the respective healthy state definition for the iden-
tified replica groups based, at least in part, on one or
more resource constraints for performing healing
operations,

wherein to schedule the one or more replica healing
operations, the dynamic heal scheduler is further con-
figured to determine an order in which the one or more
replica healing operations are to be performed with-
out exceeding the one or more resource constraints
based, at least in part, on one or more resource
requirements for each of the one or more replica heal-
ing operations.

US 9,304,815 B1

21

2. The system of claim 1, wherein the replica group status
sweeper is further configured to:

update the status metadata within a table storing availabil-

ity information for replicas of the one or more replica
groups, wherein the table is stored on one or more of the
plurality of computing nodes within the data storage
service.

3. A method, comprising:

performing, by a plurality of computing devices:

accessing status metadata for one or more replica
groups, wherein each of the one or more replica
groups maintains one or more replicas of data,
wherein each replica group of the one or more replica
groups includes a respective healthy state definition
for the replica group;
determining, based at least in part on the status metadata,
that a number of available replicas for at least one
replica group of the one or more replica groups is not
compliant with the respective healthy state definition
for the at least one replica group; and
dynamically scheduling one or more replica healing
operations to restore the number of available replicas
for the at least one replica group to the respective
healthy state definition for the at least one replica
group based, at least in part, on one or more resource
constraints for performing healing operations,
wherein the scheduling determines an order in which
the one or more replica healing operations are to be
performed without exceeding the one or more
resource constraints based, at least in part, on one
or more resource requirements for each of the one
or more replica healing operations.

4. The method of claim 3, wherein each replica of a replica
group of the one or more replica groups is stored on different
ones of a plurality of compute nodes, and wherein the method
further comprises:

receiving from one or more of the different ones of the

plurality of compute nodes status information for acom-
pute node; and

in response to receiving the status information for the com-

pute node, updating the status metadata to reflect the
received status information.

5. The method of claim 4, wherein the one or more of the
different ones of the plurality of compute nodes include a
master node of the different ones of the plurality of compute
nodes, and wherein the status information is received peri-
odically or aperiodically.

6. The method of claim 3, wherein each replica of a replica
group of the one or more replica groups is stored on different
ones of a plurality of compute nodes, and wherein said deter-
mining, based at least in part on the status metadata, that a
number of available replicas for at least one replica group of
the one or more replica groups is below a specified number of
replicas for the at least one replica group, comprises:

analyzing the status metadata to identify one or more com-

pute nodes for status confirmation; and

requesting status information from the identified one or

more compute nodes storing a given replica to confirm
the status of the identified one or more compute nodes.

7. The method of claim 3, wherein the order in which the
one or more replica healing operations are to be performed
without exceeding the one or more resource constraints
based, at least in part, on the one or more resource require-
ments for each of the one or more replica healing operations,
comprises ordering the one or more replica healing opera-
tions according to replica access frequency of the one or more
replica groups.

15

30

40

45

55

60

65

22

8. The method of claim 3, further comprising:

determining the one or more resource requirements of each

of the one or more replica healing operations based on
identifying a heal source and heal destination for the one
or more replica healing operations;
wherein the order in which the one or more replica healing
operations are to be performed without exceeding the
one or more resource constraints based, at least in part,
on the one or more resource requirements for each of the
one or more replica healing operations, comprises order-
ing the one or more replica healing operations based, at
least in part, on the heal source and the heal destination
for the one or more replica healing operations such that
the ordering of the one or more replica healing opera-
tions does not result in a conflict between a plurality of
queued healing operations.
9. The method of claim 3,
wherein the one or more resource constraints for perform-
ing healing operations comprise expected network traf-
fic directed toward the one or more replica groups;

wherein the order in which the one or more replica healing
operations are to be performed without exceeding the
one or more resource constraints based, at least in part,
on the one or more resource requirements for each of the
one or more replica healing operations, comprises order-
ing the one or more replica healing operations according
to the expected network traffic directed toward the one or
more replica groups.
10. A non-transitory, computer-readable storage medium,
storing program instructions that when executed by a plural-
ity of computing devices implement a data storage service
that implements:
accessing status metadata for one or more replica groups,
wherein each of the one or more replica groups main-
tains one or more replicas of data stored among a plu-
rality of compute nodes implemented by the plurality of
computing devices on behalf of one or more storage
service clients, wherein each replica group of the one or
more replica groups includes a respective healthy state
definition for the respective replica group;

determining, based at least in part on the status metadata,
that a number of available replicas for at least one replica
group of the one or more replica groups is not compliant
with the respective healthy state definition for the at least
one replica group; and

dynamically scheduling one or more replica healing opera-

tions to restore the number of available replicas for the at

least one replica group to the respective healthy state

definition for the at least one replica group based, at least

in part, on one or more resource constraints for perform-

ing healing operations,

wherein the scheduling determines an order in which the
one or more replica healing operations are to be per-
formed without exceeding the one or more resource
constraints based, at least in part, on one or more
resource requirements for each of the one or more
replica healing operations.

11. The non-transitory, computer-readable storage
medium of claim 10, wherein the data storage service further
implements:

automatically performing the scheduled one or more rep-

lica healing operations to restore the number of available
replicas for the at least one replica group to the respec-
tive healthy state definition for the at least one replica
group.

12. The non-transitory, computer-readable storage
medium of claim 11, wherein said accessing, said determin-

US 9,304,815 B1

23

ing, said dynamically scheduling, and said automatically per-
forming are performed as part of a background process.

13. The non-transitory, computer-readable storage
medium of claim 10, wherein different ones of the one or
more replica groups include a different respective healthy
state definition from other ones of the one or more replica
groups.

14. The non-transitory, computer-readable storage
medium of claim 10, wherein the respective healthy state
definition included with the one or more replica groups com-
prises:

a specified number of replicas; or

one or more specified compute node locations each includ-

ing a respective specified number of replicas.

15. The non-transitory, computer-readable storage
medium of claim 10, wherein the data storage service further
implements:

receiving from one or more different ones of the plurality of

compute nodes status information for a compute node;
and

in response to receiving the status information for the com-

pute node, updating the status metadata within a table
storing availability information for replicas of the one or
more replica groups.

16. The non-transitory, computer-readable storage
medium of claim 10, wherein the order in which the one or
more replica healing operations are to be performed without
exceeding the one or more resource constraints based, at least
in part, on the one or more resource requirements for each of
the one or more replica healing operations, comprises the data
storage service ordering the one or more replica healing

10

20

25

30

24

operations according a load balancing scheme to distribute
the one or more replica healing operations among the plural-
ity of compute nodes.

17. The non-transitory, computer-readable storage
medium of claim 16, wherein the one or more resource con-
straints comprise computational requirements, network
bandwidth, storage requirements, or a quantity of parallel
processes.

18. The non-transitory, computer-readable
medium of claim 10, further comprising:

determining one or more resource requirements for each of

the one or more replica healing operations comprises the
data storage service identifying a compute node source
and a compute node destination for the one or more
replica healing operations,

wherein the order in which the one or more replica healing

operations are to be performed without exceeding the
one or more resource constraints based, at least in part,
on the one or more resource requirements for each of the
one or more replica healing operations, comprises the
data storage service ordering the one or more replica
healing operations based, at least in part, on the identi-
fied compute node sources and the identified compute
node destinations for the one or more replica healing
operations such that the order in which the one or more
replica healing operations are to be performed does not
cause a number of concurrent operations to exceed a
concurrent healing threshold for each of the plurality of
compute nodes.

storage

